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Abstract 

The outbreak of SARS-CoV-2 in Wuhan, China caused a pandemic of COVID-19. 

However, it remains enigmatic why the mortality rate is variable among countries. Here 

we show that at least three types of SARS-CoV-2 virus, type S, K, and G, have spread 

globally and formed complex infectious trends in terms of transmissibility and virulence. 

Type K establishes herd immunity and protects against the most virulent type G. 

Immunity to type S is involved in aggravating type G infections through antibody-

dependent enhancement. Epidemiological tools based on influenza and SARS-CoV-2 

epidemic curves explain why COVID-19 mortality varies among Japan prefectures and 

European countries and warns of high fatality in the United States. An equation was 

developed to predict the severity of COVID-19. Our tools and equations also detect new 

infectious disease explosions and bioterrorism early, and guide containment of the virus 

with therapeutic approaches and local policies efficiently inducing herd immunity.  
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Introduction 

The pandemic of SARS coronavirus 2 (SARS-CoV-2)1-3 fills the world with fear and 

confusion, threatening medical collapse and the global financial crisis. Flattening the 

epidemic curve to avoid loss of healthcare capacity is a major global strategy but has the 

disadvantage of delaying the achievement of full herd immunity and sacrificing 

economic activity. Once the herd immunization is established, the government can 

confidently decide when to lift restrictions. Therefore, governments need to predict 

trends in SARS-CoV-2 outbreaks. In a pandemic epidemiology exists first and foremost 

in determining public health policy. Unfortunately, no government knows the 

epidemiological methods for predicting their own SARS-CoV-2 status. Here, we 

develop epidemiological tools to analyse the SARS-CoV-2 epidemic, clarify the trends 

of the epidemic, and propose countermeasures identified from the analysis. The 

different pathogenicity of strains could be explained by their ability to induce antibody-

dependent enhancement (ADE). Furthermore, we also revealed how ADE and herd 

immunity are regulated during the evolution of the virus. 

 

  



 4 

Results 

Sharp drops in the influenza epidemic curve 

Japanese doctors have noticed that the flu epidemic has suddenly diminished (kakeru in 

Japanese) during the 2019 winter season.4 In Japan, most of the reported cases were 

diagnosed with a rapid diagnostic test, so this drop is not due to a reduction in flu-like 

illnesses other than influenza. Type I interferons induced by SARS-CoV-2 may 

interfere with influenza virus infection.5,6 Therefore, an ecological study7 was 

conducted to compare the prevalence of SARS-CoV-2 infection with the sum of 

sentinel influenza surveillance alerts and warnings reported by the Japanese prefectural 

health centres. The flu may not spread in the summer due to the interference of 

infectious diseases that spread in the summer,8 tentatively named E (for enteric virus).9 

In tropical and subtropical areas such as Okinawa Prefecture, tropical microorganisms, 

tentatively called T, interferes with E in summer, but influenza may not be affected by 

T. This explains why the flu is prevalent in summer in the tropical and subtropical areas. 

Okinawa has been excluded from the current analysis due to these potential 

confounders.  

Traces of virus interference starting on 13 January 13 2020 have been 

identified in all prefectures of Japan (Fig. 1a). We also noticed a small deflection before 

the big wave, indicating the possibility of a small pre-epidemic in some areas before 

SARS-CoV-2 outbreaks (Fig. 1b). Thus, the epidemic curves were stratified into two 

groups based on the presence or absence of the deflection. One group had a small notch 

(Fig. 1b) and the other did not (Fig. 1c). The virus that caused the pre-epidemic was 

tentatively named type S (for sakigake, see below), and the virus that caused this major 

epidemic was tentatively named type K (for kakeru). 



 5 

There was a small spring outbreak (sakigake in Japanese) of influenza virus 

infection before the pandemic of “Spanish flu”. Patients immunized with influenza in 

the pre-epidemic did not become infected in the subsequent pandemic.10 Therefore, the 

prevalence of SARS-CoV-2 was compared with the epidemic curve pattern of each 

prefecture. Due to the small number of tests in Japan, the prevalence calculated based 

on the number of patients is not robust. We decided to use the positive rate of the RT-

PCR test as the value that best reflects the prevalence. Because the Poisson distribution 

of small sample results confused the analysis, the study was limited to prefectures with 

more than 200 tests. Prefectures with the small deflection had significantly lower RT-

PCR positive rate than those without the notch (P = 0.009) (Fig. 1d). This suggests that 

pre-epidemic spread of type S virus induced immunity that reduced the prevalence of 

coronavirus disease 2019 (COVID-19). Therefore, we stratified and analysed 

prefectures according to the presence or absence of small deflection. 

 

Analyses of kindergartens in Hokkaido 

Hokkaido is the largest of all prefectures in Japan and is divided into many provinces. If 

these regions are analysed collectively, effective analysis may not be possible due to the 

regional heterogeneity. Mathematical modelling has shown that undocumented 

infections of SARS-CoV-2 were the infection source for most documented cases.11 

Because children infected with SARS-CoV-2 are asymptomatic or mildly 

symptomatic,12 it is assumed that children are the primary source of the SARS-CoV-2 

outbreak. The incidence of influenza-like illness in kindergartens (3 to 5 years old) as 

reported by health centres in Hokkaido was compared to current SARS-CoV-2 

infection. As shown in Fig. 2, strong negative correlation was found (Spearman 
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correlation coefficient ρ = -0.73), suggesting that undocumented SARS-CoV-2 infection 

among small children in Hokkaido suppressed influenza-like illness. The involvement 

of other pathogens cannot be ruled out, but there were no such reports in the 

corresponding areas. Influenza-like illnesses in older children did not reflect the SARS-

CoV-2 epidemic [ρ = -0.14 in elementary school (6 to 11 years old), ρ = 0.07 in junior 

high school (12 to 14 years old), and ρ = -0.04 in high school (15 to 17 years old)]. The 

flu-like symptoms of coronavirus disease 2019 (COVID-19) in these age groups might 

have confused our analyses. 

 

Epidemiological analyses of SARS-CoV-2 epidemics in Japan 

The SARS-CoV-2 infection that had subsided in Japan has re-exploded. Only viruses 

with a higher basic reproduction number (R0) can spread to populations with established 

herd immunity. Presumably, the new virus, derived from type K and carrying a 

phenotypic mutation, won the competition with the original type K in Europe and the 

United States,13 and appears to have entered Tokyo on 5 March 5 2020 (see Extended 

Data Fig. 1b). The mutant virus with increased R0 was tentatively named type G (for 

global). 

In Aichi Prefecture of Japan, patients returning from Hawaii caused an 

outbreak at a gym.14 This virus is thought to have been of type G from the United 

States. The case fatality rate (CFR) is much higher in Aichi (8.9%) than other 

prefectures in Japan (see Fig. 3b). This suggests that type G virus is more virulent than 

type K. In areas where type G invasion is expected, such as in Aichi, there is a large 

delayed peak in the SARS-CoV-2 RT-PCR positive rate trend curve (Extended Data 

Fig. 1a, arrows). On the other hand, this peak is not found in areas where type G has not 
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penetrated, such as Tokyo (Extended Data Fig. 1b). In some areas, the type K peaks 

(Extended Data Fig. 1c, asterisks) are large and the subsequent type G epidemics are 

suppressed. We painted the prefectures according to the presence of the K and G peaks 

(Extended Data Fig. 1d). Type G epidemics will not spread further in prefectures 

(yellow green) where both type K and G peaks. On the other hand, in areas where only 

type K peaks and type G do not reach peak (magenta), it is likely that type G epidemics 

will progress in the future. In areas where there is no type K peak (red), type G 

epidemics are expected to be the most intense. This geographical distribution is similar 

to that of the new SARS-CoV-2 positive cases (Extended Data Fig. 1e), suggesting that 

herd immunity to the S and K viruses determines how the G virus infection spreads. 

Calculations using epidemiological parameters (Extended Data Text S1) 

revealed that basic reproduction number of SARS-CoV-2 type S (R0S) and type G (R0G) 

are 2.19 and 5.23, respectively. R0G is considerably larger than the type K virus (R0K = 

2.2),15 meaning a greater increase in transmissibility than the increase from R0S to R0K. 

Nevertheless, it is worth noting that at this R0 the likelihood of airborne transmission is 

low. 

 The difference in PCR positive rates between Japan prefectures may be due to 

differences in exposure to type S virus. Epidemiological calculations (Extended Data 

Text S2) show that 98.0%, ~100%, and 75.4% of the population in Aichi were exposed 

to the type S, K, and G viruses, respectively. In Fukuoka, 99.1% and ~100% of the 

population were exposed to type S and K SARS-CoV-2. Thus, the proportion of the 

virus type exposed differs in each region. When the entire population is exposed to type 

K or G viruses without viral immunization, 54.5% and 80.9%, respectively, can become 

infected (Extended Data Text S1) and cause severe outbreaks. Thus, the outbreak of 
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SARS-CoV-2 in Japan was modest as the spread of type S and K provided partial 

immunity to subsequent infection. 

 

Analysis of subcluster 

One of the key factors in modelling epidemics is the existence of subgroups.7 According 

to the Ministry of Health, Labour and Welfare, 640 out of 1647 RT-PCR- positive 

people in Japan are foreigners as of 29 March 2020. Subcluster analysis (Extended Data 

Text S3) revealed that more than 5.03 x 104 infected foreigners must be present in 

Japan. This estimate is plausible, as there were 2.67 million foreigners registered in 

Japan in early 2020, and 1.84 million Chinese tourists came to Japan from the end of 

2019 to the beginning of 2020. Most of the infected 5.03 x 106 foreigners may have 

returned to their counties. Moreover, R0 of the subpopulation is considerably larger (ex. 

3.99) than Japanese, suggesting that foreigners had formed highly contagious 

subclusters. Such analyses can help determine the size and density of the dense contact 

subcluster on epidemics. 

 

Development of risk scores 

Virus-to-virus interference occurs because the biological response to one virus prevents 

the transmission of the next virus.6,16 Therefore, the extent to which SARS-CoV-2 affects 

the influenza epidemic curve should be determined by the strength of the biological 

response. The small wave of type S infection during the week from 23 December 2019 

(Fig. 1b) is not necessarily due to the small number of people infected. This may have 

been due to weak biological response to type S infection. Response to type S may have 

been weaker due to previous exposure to a more ancestral virus or due to competing 



 9 

viruses. The asymptomatic rate of Japanese evacuated from Wuhan, which is highly likely 

to be infected with type K and/or G, is 30.8% (95% CI: 7.7-53.8%).17 In contrast, 

passengers on the cruise ship Diamond Princess were considered to be type S and/or K 

because they were tracked to Hong Kong passengers, and 51.4% (318/619) of RT-PCR 

confirmed cases were asymptomatic.18 Due to the high asymptomatic proportion of cruise 

ship passengers, type S infection is more likely to be asymptomatic than type K or G, 

supporting the view that the virus can easily escape surveillance recognition. 

An immune response to type K virus occurred following the K infection found 

in all prefectures in the week beginning 13 January 2020 (Fig. 1a). Cytokine storms are 

implicated in severe COVID-19.19 The strong immune response can also affect the flu 

epidemic, causing a decline in the epidemic curve. A weak response to SARS-CoV-2 

may not be enough to interfere with the flu. In fact, a small number of cases have been 

reported to be co-infected with SARS-CoV-2 and influenza virus.20 The epidemic 

curves after type K wave differed by prefecture and showed clearly different degrees of 

decline (Extended Data Fig. 2). Therefore, we have developed a scoring system for 

epidemic curve reduction as a surrogate indicator of innate and adaptive immunity to 

type K virus. 

The degree of immunity to SARS-CoV-2 types S, K, and G determines the 

prevalence of infection, as described above. Therefore, the degree of herd immunity can 

be estimated from the positive rate of RT-PCR. However, performing RT-PCR tests on 

many patients places a heavy burden on society and healthcare professionals, and there 

has been a growing need for easily available surrogate indicators. Indeed, our proxy for 

immunity to SARS-CoV-2, now termed the "risk score", was positively correlated with 

the prevalence of COVID-19 (Spearman correlation coefficient ρ = 0.415) (Fig. 3a).  
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Immunological basis for transition to type G 

Because the high mortality rate of type G patients in Aichi and Hokkaido (Fig. 3b) 

confounds the analysis, stratification was performed to exclude Aichi and Hokkaido 

from the comparison of CFR. Still, the correlation with severity of infection was weaker 

than prevalence (Spearman correlation coefficient ρ = 0.365) (Extended Data Fig. 3a). 

 To determine why the immune response to SARS-CoV-2 is not reflected in 

mortality, we calculated the effects of type S, K, and G infections on mortality. The 

CFR (F) of the present virus type on exposure to type S (x) , K (y), and G (z) is 

predicted by the following equations (Extended Data Text S4)： 

FK = 4.76y – 4.18x 

FG = 4.7z – 170.96y + 179.75x 

Interestingly, pre-existing type S infection enhances rather than attenuates the severity 

of the closest type G infection.  

Antibody-dependent enhancement (ADE) has been implicated in SARS 

becoming virulent.21 ADE is a phenomenon in which antibodies promote virus entry 

into cells through Fcγ receptors (see Fig. 7c), and are also found in dengue, yellow 

fever,22 and human immunodeficiency viruses. ADE is also thought to cause a sharp rise 

in R0, which is consistent with the type G properties. Total CFR in the population is: 

F = FK + FG  

= 4.7z – 166.20y + 175.58x 

Thus, the equation, which we playfully call the Kami (for Kamikubo) -Atsushi (sounds 

like “God is merciful” in Japanese) equation, explains how SARS-CoV-2, a virus of 

common cold （kaze in Japanese）, has become a virulent pneumonia virus.1-3 
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Considering the contribution of each variable, ADE caused by S virus is predominantly 

involved in the fatal condition. Depending on the rate at which the population is 

exposed to each type of virus (S: x, K: y, G: z), the severity and mortality when exposed 

to type K (4.76y – 4.18x) and type G (4.7z – 170.96y + 179.75x) can vary widely. In 

particular, the mortality of type G virus will jump up (4.7z + 179.75x) if the population 

were not exposed to type K after exposure to type S. 

The risk score for the magnitude of the inflammatory response inferred from 

the influenza epidemic curve does not incorporate the benefits of immunity to type K 

and the negative side of type S ADE. Therefore, we estimated K and G infections from 

the SARS-CoV-2 epidemic curve and quantified it as a scoring system that reflects the 

proportion of G infections in the epidemic, i.e., z/(y + z). The score, named “G-score”, 

correlated strongly with CFR (Fig. 3b), supporting one of the predictions of Kami-

Atsushi equation that prevalence of type G infection (z) contributes to the severity of 

the SARS-CoV-2 epidemic. The scores for each prefecture are displayed on a map of 

Japan (Fig. 3c). Prefectures with high G scores will have a higher CFR due to the higher 

percentage of type G COVID-19 than type K. Areas with low G scores indicate a low 

degree of herd immunity to type G and are expected to increase prevalence during type 

G invasion. 

 

Genetic basis for transition to type G 

The antibodies that cause ADE are directed against the viral spike protein. Higher 

antibody binding neutralizes virus entry, while lower binding results in ADE.23 This 

means that ADE is induced by spike protein mutations which weaken the binding of 

herd immunity antibodies. We therefore examined the phylogenic distribution of 
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mutations in the spike protein.13 As shown in Fig. 4a, the D614G spike mutation 

segregated a group and was under high positive selection pressure. This amino acid is 

contained in the region identified as a dominant B cell epitope.24 The D614G spike 

mutation occurred independently in Wuhan (Extended Data Fig. 4a), suggesting 

convergent evolution. 

 To clarify whether this D614G mutation in the spike protein reduces antibody 

affinity, we analysed the effect on the structure. D614 is present in the subdomain 2 

(SD2) C-terminal to the receptor-binding domain (RBD).25 The structural data in iCn3D 

is offset by 19 amino acids, so ASP633 corresponds to D614 (Fig. 4b). The previously 

reported B cell epitope starts at D601 (GLY620 in iCn3D) (Fig. 4b) and are slightly 

recessed from the surface, so one side is expected to be hydrophobic. On helix-wheel 

projection of G601 to T618,26 hydrophobic amino acids are neatly arranged on one side 

and hydrophilic amino acids on the opposite side in D614 virus (Fig. 4c), consistent 

with an amphiphilic helix. However, when the D614G mutation occurs, a hydrophobic 

amino acid will be generated there (Fig. 4d), and the hydrophobic glycine and valine 

will try to go deeper into the structure, destroying the conformation. Thus, it is strongly 

suggested that the spike D614G mutation breaks the structure of the epitope, changes 

the antibody to low affinity, and induces ADE. 

This mutation probably occurred in Shanghai (Fig. 4a). The most likely story is 

that the mutant virus flew to Italy, where it acquired the P314L mutation in the ORF1b 

gene (Extended Data Fig. 4b), and then spread to Europe, the United States, and later to 

Asia (Extended Data Fig. 4c). This paralleled the news of higher mortality rates, 

suggesting that ADE is also associated with the heightened pathogenicity.27 The 

structural analysis, immunology, and epidemiological evidence are all consistent with 



 13 

the view that the D614G mutation is responsible for the ADE characterizing transition 

to type G.  

 Type G is a variant of the virus reported as “L type” in population genetic 

studies (Extended Data Fig. 4d).28 Further research is needed on where the type S and K 

belong in the phylogenic tree. However, the virus reported as “S type” is more ancestral 

and appears to be the most appropriate candidate for type S in the present study. 

Next, we analysed epidemiological trends in China (Extended Data Text S5). 

In Wuhan, 3.7%, 4.75%, and 91.55% of SARS-CoV-2 infections were type S, K, and G, 

respectively. In contrast, outside Wuhan , the frequency of type S, K, and G was 38.4%, 

40.9%, and 20.7%, respectively. This result indicates that most of the viruses that 

spread in Wuhan were type G, while outbreaks outside of Wuhan were more caused by 

type K than by type G. Thus, differences in mortality can be explained without 

considering medical collapse in Wuhan as a risk factor. 

 

Why mortality rates differ in European countries 

Europe has become the centre of the pandemic. However, why mortality rates vary from 

country to country remains enigmatic.29 Influenza epidemic curves in European 

countries varied greatly from one country to another (Extended Data Figs. 5 and 6). 

Risk scores were calculated for European countries. This score correlated with SARS-

CoV-2 CFR in each country (Fig. 5a). The risk score essentially reflects β = (y + z)/y: 

F = 4.7z – 166.20y + 175.58x 

= 4.7 (β – 167.20) y + 175.58x 
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When x ≫ y or z as observed in Japan, CFR (F) does not closely correlate with the risk 

score (β). In Europe, however, x seems to be sufficiently low so that the correlation is 

clearly discerned. When y =1 and x ~ 0:  

F = 4.7β – 167.20 

The results suggest that severity and mortality in Europe are determined by herd 

immunity to the type K virus. Displaying the risk score on a map reveals geographical 

effects on the establishment of herd immunity (Fig. 5b). 

Because the SARS-CoV-2 type S waves in the influenza epidemic curve are 

weak and difficult to see, the notches that are clearly visible in many European 

countries (Extended Data Figs. 5 and 6) should indicate multiple invasions of type K 

viruses. In fact, the phylogenic tree of the viral genome suggests that there are multiple 

K subtypes. If only small notches are observed, it is likely that only type S has invaded 

or that the prior spread of type S has suppressed the inflammatory response to type K. 

The absence of type K waves in the epidemic curves of Italy, Ukraine, Spain, the UK, 

and France suggests poor type K protective immunity against type G, while the ADE by 

type S should exacerbate COVID-19. 

 

Predicting COVID-19 severity in the United States 

The risk score seems to predict mortality in the United States (Fig. 6a). States with 

higher scores but lower CFR may have lower total virus tests. The risk score also 

predicts that there are many areas where protective herd immunity to SARS-CoV-2 type 

K is not expected (Fig. 6b). The outbreak of influenza in the 2019 winter season clearly 

indicates that there was little spread of SARS-CoV-2 type K in the United States. Like 

the deadliest countries in Europe, many states in the United States have poorly shaped 
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K-waves (Extended Data Figs. 7 and 8). In these regions, not only does protective 

immunity by K virus fail, but ADE due to immunity to type S can contribute to 

aggravation. Compared to the maps of Japan and Europe (Extended Data Fig. 3b and 

Fig. 5b), this is a warning result suggesting that many states in the United States will 

have a higher COVID-19 mortality than Japan or Europe.  
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Discussion 

Our epidemiological analysis indicates that a virulent type G SARS-CoV-2 has R0 as high 

as 5.23. If type G virus spreads to populations that have not been previously exposed to 

the type S or K, it will lead to a relatively fatal disease with a prevalence up to 80.9%. In 

addition, ADE is thought to occur in type G infection, and patients producing low affinity 

antibodies are expected to experience exacerbations of COVID-1927 such as cytokine 

storms. Healthcare professionals in the West must keep in mind that the prevailing virus 

is of a nature beyond experiences in East Asia. European physicians have reported cases 

in which the condition worsened rapidly despite a decrease in viral load.30 Because ADE 

can cause the virus to enter cells quickly, the amount of virus detected decreases rapidly. 

Also, asymptomatic patients may worsen rapidly because ADEs suddenly occur when 

patients begin to produce low-affinity antibodies to the spike protein. Recently, a fatal 

illness was reported at age 0,12 which also suggests maternal antibody ADE. These results 

indicate that ADE's involvement in COVID-19 illustrates the current state of the world 

pandemic. 

It is important to understand the paradoxical situation31 that deteriorates when a 

subgroup exposed to type S and subsequently protected from type K (Fig. 7a) is exposed 

to type G (Fig. 7c). In the future, if a new mutant virus attacks, it is assumed that such 

reversal phenomenon will occur one after another, and caution is required. This means 

that there are additional spike protein mutations that can cause ADE, but the number of 

such epitopes should be limited.24 

Japan's low mortality rate is due to the influx of type K throughout the country 

in the week of 13 January 2020 and the establishment of herd immunity that confers 

resistance to type G. Until 9 March 2020, the Japanese government did not restrict entry 
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of tourists from areas of China outside Hubei Province, unintentionally permitting the 

selective influx of type S and K into Japan by 1.84 million Chinese tourists. The return 

of Japanese refugees on a charter aircraft from Wuhan resulted in the influx of the K virus, 

which led to wider herd immunity and readiness for the next type G outbreak. In the 

United States and most European countries, travel from China was restricted from the 

beginning of February, blocking type K influx from China. There is deep concern that the 

serious outbreak of SARS-CoV-2 in the United States and Europe may have been due to 

the spread of type G before adequate immunity to type K was established. Future 

epidemic control measures must consider options to establish herd immunity before more 

virulent viruses enter by allowing for the influx of attenuated viruses. 

The development of an antibody test can be difficult when there is asymptomatic 

infection and herd immunity is established. No test makes sense without knowing the true 

prevalence. To determine the normal range of the test, you need to determine the test 

values for unaffected individuals. Determining a cut-off value7 should be difficult for 

SARS-CoV-2. 

We have developed an epidemiological tool to monitor and predict COVID-19 

severity based on influenza epidemic curves (Extended Data Fig. 9). This tool can help 

balance social isolation and herd immunity policies and guide the development of public 

health policies that are effective and minimize economic losses. Careful monitoring of 

the influenza epidemic curve (Fig. 1b and Extended Data Fig. 9) can also reveal the 

emergence of other microorganisms that interfere with influenza infection. Of course, 

there are several infections that can interfere with influenza, and there may be co-existing 

infections that interfere with that infection. This method can be used universally among 

competing viruses and other microorganisms. The sharp change in the epidemic curve 
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that took place across the country as of 13 January 2020 (Fig. 1a) is a strong warning sign 

of the rapid spread of powerful infections that may interfere with influenza. Public health 

measures at this stage may have stopped the epidemic. Therefore, it is very useful to use 

microbial interference to detect the occurrence of a new infection and take immediate 

action. The Global Early Warning System, a Canadian health monitoring platform based 

on “BlueDot”32 using AI, noticed the outbreak of pneumonia in Wuhan on 31 December 

2019. If we were able to notice a small deflection due to the type S virus from 23 

December 2019 (Fig. 1b), epidemiological tools would have been able to detect the virus 

landing in Japan sooner, demonstrated that a better security system could be developed 

using human thinking instead of blindly relying on AI. It is worth noting that this system 

is also useful for detecting bioterrorism. 

Our epidemiological analyses also provide hints on the diagnosis and treatment 

of COVID-19. Children and pregnant women, who are more likely to produce low-

affinity antibodies, may be at risk for ADE. If the virus enters the cells due to ADE, the 

measurement of free virus does not reflect the pathophysiology. Technology for 

measuring intracellular viruses should be developed. If ADE is exacerbating the condition, 

plasmapheresis or antibody-adsorbing columns may be effective in treating severe cases 

and preventing deterioration. Convalescent sera may be useful for treatment. However, 

sera containing antibodies with low affinity for spike proteins can induce ADE and, 

conversely, lead to more severe disease. If the affinity of the antibody is high, the 

neutralizing effect becomes dominant, so a high-affinity antibody against the viral spike 

protein may subside the ADE pathology.33 Furthermore, gene editing that reverses the 

D614G mutation of type G virus may be an effective therapeutic strategy. Attenuated 

viruses and bacteria have been used as pesticides to protect against plant diseases such as 
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cucumber wilt, tomato blight, and sweet potato fusarium wilt.34 In the absence of an 

effective vaccine, a strategic infection may need to be considered to overcome the ADE 

and achieve the required immunity. 

This study has several limitations. Epidemiological research has its own pitfalls. 

The presence of confounders can lead to incorrect conclusions about epidemiological 

studies. The results of our analysis also require constant scrutiny based on scientific 

scepticism for any confounding factors that have not yet been noticed. Taken together, 

however, historical lessons indicate that epidemiology should be used during a pandemic.  
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Methods 

Sources of data 

Epidemiological data were obtained from the Worldometer,35 the COVID Tracking 

Project,36 the Hokkaido Infectious Disease Surveillance Center,37 and websites operated 

by Su Wei,38 the Ministry of Health, Labour and Welfare, Japan,39 the Infectious Disease 

Surveillance Centre, National Institute of Infectious Diseases, Japan,40 the Hokkaido 

government,41 and the World Health Organization.42 

 

Modelling analysis 

Mathematical modelling of the prevalence, R0, and CFR was performed according to the 

practice of theoretical epidemiology7 using basic formulas such as the following: 

p = 1 – 1/R0 

Where p is the proportion of the immunized population when herd immunity is 

established. 

The GISAID database13 was used for the phylogenetic analyses of SARS-CoV-

2 gene mutations.43,44 3D structure of SARS-CoV-2 spike protein was obtained from the 

iCn3D website.45 Helix-wheel projections were created to analyze amphiphilic helix 

structures using the NetWheels projections maker.26 

 

Statistical analysis 

The quantification and modelling of the epidemiological curve (calculations of risk score 

and G score) were performed under contract with Shin Nippon Biomedical Laboratories, 

Ltd. (Tokyo, Japan). Analyses of Spearman correlation coefficient were performed with 

the use of the Statcel4 add-in package (OMS Publishing, Tokorozawa, Japan) for 
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Microsoft Excel. 

 

Data availability 

All data are available on request. 
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Figure legends 

Fig. 1 | SARS-CoV-2 trend curves in Japan prefectures. a, The numbers of influenza 

alerts and warnings reports from 11 November 2019 to 8 March 2020 from all prefectures 

in Japan have been plotted. b, Trend curves of prefectures with small deflections before 

large waves. c, Prefectural trend curves without small deflections before large waves. d, 

Box-and-whisker plot comparing the prevalence of COVID-19 in prefectures with (+) 

and without (-) small deviations before large waves. 

 

Fig. 2 | Correlation between influenza in kindergartens and SARS-CoV-2 infection. 

The correlation diagram shows the prevalence (%) of influenza-like illness in 

kindergartens in each district in Hokkaido and the number of individuals who were RT-

PCR positive for SARS-CoV-2. Spearman correlation coefficient ρ = -0.73. 

 

Fig. 3 | The risk score, G score, and COVID-19 mortality in Japan. a, Correlation 

between the risk score and RT-PCR positive rates (%) for SARS-CoV-2 in Japan 

prefectures. Spearman correlation coefficient ρ = 0.415. b, Correlation between the G 

score and CFR of COVID-19 in Japan prefectures. Spearman correlation coefficient ρ = 

0.537. c, Japan map showing the distribution of G scores of various strengths between 

prefectures. 

 

Fig. 4 | Genomic and structural analysis of type G SARS-CoV-2. a, Phylogenic 

distribution of spike D614G mutation of SARS-CoV-2 in the GISAID database.13 b, 

Structure of the B cell epitope (G601 to D614), corresponding to GLY620 to ASP633 in 

the iCn3D database.45 c, Helix-wheel projection of G601 to T618 in the SARS-CoV-2 
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spike protein created by NetWheels.26 d, Helix-wheel projection showing the effect of 

D614G mutation. 

 

Fig. 5 | The risk scores and COVID-19 mortality in Europe. a, Correlation between 

the risk score and CFR of COVID-19 in European countries. Spearman correlation 

coefficient ρ = 0.65. b, A map of Europe showing the distribution of risk scores for 

different strengths. Influenza epidemic data was not available in the blank area. 

 

Fig. 6 | Risk scores and CFR in USA. a, Correlation between risk scores and CFR of 

COVID-19 in U.S. States. Spearman correlation coefficient ρ = 0.46. b, USA map 

showing risk scores. 

 

Fig. 7 | A model for antibody-dependent enhancement of SARS-CoV-2 type G 

infection. a, By specifically binding to type G SARS-CoV-2 surface spikes, neutralizing 

antibodies prevent interaction with host cells that can be infected and destroyed. b, 

Infection or COVID-19 in the absence of antibodies. c, The enhancing antibody helps 

type G SARS-CoV-2 infect monocytes more efficiently. It increases the overall 

replication of the virus and the risk of severe type G COVID-19. Thus, antibody-

dependent enhancement (ADE) increases the infection of SARS-CoV-2 particles during 

subsequent COVID-19 by another viral serotype. 
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